Show that (p → q) ∨ (p → r) and p → (q ∨ r) are logically equivalent. By the definition of conditional statements on page 6, using the Com- mutativity Law, the hypothesis is equivalent to (q ∨ ¬p) ∨ (¬p ∨ r). ... This means that the conditional from the second-to-last column the last column is always true (T).