#30
We need to find the value of
![cot((-8\pi)/(3))](https://img.qammunity.org/2023/formulas/mathematics/college/amhk6l1a666gdzryfh6ech5gwvpfuotm49.png)
1. We will add 2pi to it until change it from negative to positive, then look for its quadrant
![\begin{gathered} (-8\pi)/(3)+2\pi=(-8\pi)/(3)+(6\pi)/(3)=(-2\pi)/(3) \\ \\ (-2\pi)/(3)+2\pi=(-2\pi)/(3)+(6\pi)/(3)=(4\pi)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kwmhb7g63lisltsuru1pgpad0kxi1ymmlm.png)
The angle 4pi/3 lies on the 3rd quadrant
Since the angle in the 3rd quadrant has the form
![\pi+\theta](https://img.qammunity.org/2023/formulas/mathematics/college/j1ozeme1yl392o58vnpmxxrmhtqenfozyk.png)
Where theta is an acute angle, then
![\begin{gathered} \pi+\theta=(4)/(3)\pi \\ \theta=(4\pi)/(3)-\pi \\ \theta=(4\pi)/(3)-(3\pi)/(3) \\ \theta=(\pi)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yryw112ferpz2sxwt471dnlmw5wipqgfmr.png)
Then we will find the value of tan(pi/3), then reciprocal it to find cot
![tan(\pi)/(3)=√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/i3uv7tro4u1aty4auodpibf2wr058tfjpq.png)
Reciprocal it
![cot((\pi)/(3))=(1)/(√(3))*(√(3))/(√(3))=(√(3))/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/3xukc3fj61q9enypdwhp8uzamwxspyi96j.png)
In the 3rd quadrant tan and cot are positive values, then
The value of
![\begin{gathered} cot(\pi+(\pi)/(3))=(√(3))/(3) \\ \\ cot((4\pi)/(3))=(√(3))/(3) \\ \\ cot((-8\pi)/(3))=(√(3))/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ly7pogdqhyzwxg2aw122aaseyc739hl27k.png)
The answer is
![(√(3))/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/61prukstswgm57e0z50q8bvjpkb5x1fdgt.png)