145k views
2 votes
Given the relationship between two angles, how do I find x and give the exact measures of angles?

User Sestertius
by
4.8k points

1 Answer

4 votes

ANSWER

Part A:


\begin{gathered} x=10^0 \\ m\angle1=40^0 \\ m\angle2=50^0 \end{gathered}

Part B:


\begin{gathered} x=30^0 \\ m\angle1=150^0 \\ m\angle2=30^0 \end{gathered}

Step-by-step explanation

Part A: Complementary

Two angles are said to be Complementary if there sum is 90 degrees.


\begin{gathered} m\angle1\text{ + m}\angle2\text{ = 90} \\ 30\text{ + x + 40 + x = 90} \\ 2x\text{ + 70 = 90} \\ 2x\text{ = 90 - 70} \\ 2x\text{ = 20} \\ x\text{ = }(20)/(2)\text{ = 10} \end{gathered}

Measure of the two angles


\begin{gathered} m\angle1\text{ = 30 + x} \\ m\angle1\text{ = 30 + 10} \\ m\angle1=40^0 \end{gathered}
\begin{gathered} m\angle2\text{ = 40 + x} \\ m\angle2\text{ = 40 + 10} \\ m\angle2=50^0 \end{gathered}

Part B: Supplementary

Two angles are said to be Supplementary if there sum is 180 degrees


\begin{gathered} m\angle1\text{ + }m\angle2\text{ = 180} \\ 5(m\angle2)\text{ + x = 180} \\ 5x\text{ + x = 180} \\ 6x\text{ = 180} \\ x\text{ = }(180)/(6)=30^0 \end{gathered}

Measure of the two angles


\begin{gathered} m\angle1\text{ = 5(m}\angle2) \\ m\angle1\text{ = 5x} \\ m\angle1\text{ = 5 }*30 \\ m\angle1=150^0 \end{gathered}
\begin{gathered} m\angle2\text{ = x} \\ m\angle2=30^0 \end{gathered}

User Canni
by
4.3k points