Given:
The period of a simple pendulum, T₁=2.0 s
The length of the pendulum is doubled.
To find:
The new value of the period of the pendulum.
Step-by-step explanation:
Let us assume that, initially, the length of the simple pendulum was L. Then, its new length will be, 2L.
The period of a simple pendulum is given by the equation,
![T_1=2\pi\sqrt[]{(L)/(g)}\text{ }\rightarrow\text{ (i)}](https://img.qammunity.org/2023/formulas/physics/college/olv6ttuv025s4ha6wrrp0a7x19jxtjx0la.png)
The new period of the pendulum is given by,
![T_2=2\pi\sqrt[]{(2L)/(g)}\text{ }\rightarrow\text{ (ii)}](https://img.qammunity.org/2023/formulas/physics/college/j340dw1rrqoju3zva9h67b3yk6x5hg7w84.png)
On dividing the equation (ii) by equation (i),
![\begin{gathered} (T_2)/(T_1)=\frac{2\pi\sqrt[]{(2L)/(g)}}{2\pi\sqrt[]{(L)/(g)}} \\ =\frac{\sqrt[]{2L}}{\sqrt[]{L}} \\ =\sqrt[]{2} \\ \Rightarrow T_2=T_1\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/nhtns4whdtiayuvaxbfa9n073ez7dme84s.png)
On substituting the known values,
![\begin{gathered} T_2=2.0*\sqrt[]{2} \\ =2.83\text{ s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/zeovpz3dflg6mu0epy485rze7qyoatki4n.png)
Final answer:
The new period of the pendulum is 2.83 s