We know that the rule for a geometric sequence is given by
![a_n=a_1\cdot r^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/usnb6cvy5q0c41ojuruucgvjnfnf10g7si.png)
where a_1 is the first term and a_n is the nth term. From the given information, we also know that
![\begin{gathered} n=2\Rightarrow a_2=24 \\ \text{and} \\ n=4\Rightarrow a_4=384 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tzye1pbqdhb9jqxm3bsumld1l3ngi6vtt4.png)
By substituting these values into the geometric sequence formula, we have
![\begin{gathered} 24=a_1\cdot r^(2-1) \\ \text{which gives} \\ a_1\cdot r=24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s5n0pfe2jxx6ebvaef5au3548j8ckftk2r.png)
and
![\begin{gathered} 384=a_1\cdot r^(4-1) \\ \text{which gives} \\ a_1\cdot r^3=384 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wt33ylgh7h50cdewxqc7gwpxjnjet97tqv.png)
So, we have 2 equations:
![\begin{gathered} a_1\cdot r=24\ldots(i) \\ a_1\cdot r^3=384\ldots(ii) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/el3gznafyqjr4jw7higzou683zf4rugxht.png)
We can express a_1 in term of r by dividing equation (i) by r, that is,
![a_1=(24)/(r)\ldots(iii)](https://img.qammunity.org/2023/formulas/mathematics/college/ynnp373g7uqscuox7e46lonqyfcjseva3x.png)
By substituting this result into equation (ii), we have
![(24)/(r)\cdot r^3=384](https://img.qammunity.org/2023/formulas/mathematics/college/fibavem8n2uw59s1f9c55lanhntpuhvovj.png)
or equivalently,
![24\cdot r^2=384](https://img.qammunity.org/2023/formulas/mathematics/college/nv3vsl8ujgq1ocq5o4jr1esz27jm12ztmf.png)
Then by dividing both sides by 24, we have
![\begin{gathered} r^2=(384)/(24) \\ r^2=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ljc3qusk8oamkcvm0u0jvgb4qs0vbylwoe.png)
then
![\begin{gathered} r=\sqrt[]{16} \\ r=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ktkph93g9sy414wox5d2zo4wloy5xqtpc8.png)
Once we know the result for r, we can substitute its value into equation (iii) and get
![a_1=(24)/(4)=6](https://img.qammunity.org/2023/formulas/mathematics/college/47shjh0gh34f0jhdvsn7yo3qf5str58ur6.png)
Therefore, the sequence that represents the given values is
![a_n=6\cdot(4)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/c7lm019j2zjx1r2udqgqvyu9agimdkxi70.png)
In summary, the answers are:
What is the sequence generator? Answer: The generator is the common ratio r. So, r=4.
Write an equation to represent the sequence. Answer: From our last resul, the equation is
![a_n=6\cdot(4)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/c7lm019j2zjx1r2udqgqvyu9agimdkxi70.png)