Given
![3^7mod\text{ }7](https://img.qammunity.org/2023/formulas/mathematics/college/jate3wttb2y6au4k57y9fc4x1d6tjyz22z.png)
Find
Compute the value of mod
Step-by-step explanation
We have given
![3^7mod\text{ }7](https://img.qammunity.org/2023/formulas/mathematics/college/jate3wttb2y6au4k57y9fc4x1d6tjyz22z.png)
as we can rewrite it
![\begin{gathered} 3^7mod\text{ 7} \\ 2187mod7 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ufkoo3ly0luw3gfcn19h3070k6v5cajw6d.png)
here , we see dividend , a = 2187 and divisor , b = 7
we know ,
![a\text{ mod b = a- \lparen int \lparen a/b\rparen}* b\text{\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/vexhf6ergtslg6y6qaaj75fm5uztpp7ziv.png)
where int is a integer part of the value .
so ,
2187 mod 7 = 2187 -(Int (2187/7)*7)
2187 mod 7 = 2187 - 312 *7
2187 mod 7 = 2187 - 2184
2187 mod 7 = 3
Final Answer
Therefore , the value of 3^7 mod 7 = 3