see the figure below to better understand the problem
The area of the square is
![A=b^2](https://img.qammunity.org/2023/formulas/mathematics/college/fafyhgn1rapwrqaj2wldx2vvaz792kqrk2.png)
The area of the circle is given by
![A=\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/lcgfavc89jro4qntamn2b9gfliomu1jwuf.png)
The area outside the circle but inside the square is given by the equation
![A=b^2-\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/tm8kz0bbzfhs22hsjl2xqom1vaqbov3caj.png)
Find out dA/dt
using implicit differentiation
![(dA)/(dt)=2b(db)/(dt)-2\pi r(dr)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/college/np21n8xddfj9wtjce7dijiqm8bop6hin9w.png)
Remember that
we have
db/dt=-5 m/min
dr/dt=-4 m/min
substitute
![\begin{gathered} (dA)/(dt)=2b(-5)-2\pi r(-4) \\ \\ (dA)/(dt)=-10b+8\pi r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5yec8lkv6ua4etjbvrzjqlzw7asifro5cp.png)
Evaluate for r=2 m and b=24 m
![\begin{gathered} (dA)/(dt)=-10(24)+8\pi(2) \\ \\ (dA)/(dt)=-240+16\pi \\ \\ (dA)/(dt)=-189.73\text{ }(m^2)/(min) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fjjgxthjt29ytow3w4niew92yvudjkfd9h.png)
Round to the nearest whole number
the answer is -190 m2/min (negative because is decreasing)