we know that
The area of complete circle subtends a central angle of 360 degrees
so
using proportion
Find out the area of the sector with a central angle of 45 degrees
![(pi\cdot r^2)/(360)=(x)/(45)](https://img.qammunity.org/2023/formulas/mathematics/college/cukws3fxet86xnq9l7c04yigs6yd4ihpu6.png)
we have
r=8 units
substitute and solve for x
![\begin{gathered} (pi\cdot(8)^2)/(360)=(x)/(45) \\ \\ x=\pi\cdot64\cdot(45)/(360) \\ x=8\pi\text{ units\textasciicircum{}2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/omov7m5lmwqow5kztyzx1iusn4rffa1m7m.png)
therefore
the answer is 8pi square units
option B