The given expression is
![(((2)/(a)+(7)/(b)))/(b)](https://img.qammunity.org/2023/formulas/mathematics/college/kn2ra2qa7zydfei29t82o19f4mxp06oxgf.png)
To add 2 fractions we have to give them the same denominators
In the up part (numerator) we have 2 different denominators a and b
Then the common denominator of the 2 fractions must be the product of them
![(2)/(a)+(7)/(b)=(2b)/(ab)+(7a)/(ab)=(2b+7a)/(ab)](https://img.qammunity.org/2023/formulas/mathematics/college/vqjd7h6eqxw3l40q60ebr0668hq7j0jchi.png)
Then the fraction will be
![((2b+7a)/(ab))/(b)](https://img.qammunity.org/2023/formulas/mathematics/college/27f1r2phy6p7y3y1hc0jg6hqayqq1iw6rs.png)
Now, we will multiply the denominator of up by the denominator of the first fraction (ab x b)
![((2b+7a)/(ab))/(b)=(2b+7a)/(b(ab))](https://img.qammunity.org/2023/formulas/mathematics/college/jcga9x6h76xu802s8wnnfwhcv7geuyin5t.png)
Multiply b by b to simplify, then
![(2b+7a)/(b(ab))=(2b+7a)/(ab^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ifvrmfcb3g770clz6ly4frdxmslga9ys2h.png)
The numerator is 2b + 7a
The denominator is ab^2