Given:
The vertex of the parabola, (h, k) = (0, -7)
The parabola passes through the point (x, y) = (2,4).
To find the parabola equation:
The general form is,
![y=a(x-h)^2_{}+k](https://img.qammunity.org/2023/formulas/mathematics/high-school/12ku1hfurrpez17j3kw2aosxuy317pqhmj.png)
Substitute h=0, k=-7, x=2, and y=4. We get,
![\begin{gathered} 4=a(2-0)^2-7 \\ 4=4a-7 \\ 4a=11 \\ a=(11)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dhqp13w0kkgsxp4l8xbemmeul4thg1gal3.png)
Substitute the values of a, h, and k in the general form.
We get,
![\begin{gathered} y=(11)/(4)(x-0)^2_{}-7 \\ y=(11)/(4)x^2_{}-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sdcdwpcs36lahsgyvryzcljg39z4t31ga8.png)
Hence, the parabola equation is,
![y=(11)/(4)x^2_{}-7](https://img.qammunity.org/2023/formulas/mathematics/high-school/tf8s5xs69yakiq6xsgn9whp0nuye2mygkw.png)