Use Coulomb's Law to find the electric force.
![F=K\cdot(q_1\cdot q_2)/((d_(12))^2)](https://img.qammunity.org/2023/formulas/physics/college/q3e205i4ory9ikxfvwz1nmbqazv4q290am.png)
In this case, both particles have the same charge magnitude because both are elementary particles, however, they have opposite charge nature, a proton is positive and an electron is negative.
All the magnitudes we know are
![\begin{gathered} e=-1.60*10^(-19)C \\ p=+1.60*10^(-19)C \\ \text{Also,} \\ K=8.99*10^9\cdot(N\cdot m^2)/(C^2) \\ d_(12)=1.0*10^(-10)m \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/o3xfiqng55d1mvjjznyxqhtu8l8ncm1bpp.png)
Use the magnitudes in the formula to find F.
![\begin{gathered} F=8.99*10^9\cdot(N\cdot m^2)/(C^2)\cdot(|-1.60*10^(-19)C|\cdot|+1.60*10^(-19)C|)/((1.0*10^(-10)m)^2) \\ F=(23.01*10^(9-19-19))/(1*10^(-20))N \\ F=(23.01*10^(-29))/(10^(-20))N \\ F=23.01*10^(-29+20)N \\ F=23.01*10^(-9)N \\ F=2.3*10^(-8)N \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/czhcqych62dfwksyausu4gvh0ytz3ngzoo.png)
Therefore, the answer is B.