To solve this problem, we will use the following formula for the area of a trapezoid:
![A=(a+b)/(2)h,](https://img.qammunity.org/2023/formulas/mathematics/high-school/zkr12qmf2uabn3bqwk3b7i8b2obx6xbv6q.png)
where a, and b are the lengths of the bases and h is the height.
Now, we are given that ( we will omit the units to simplify the calculations):
![\begin{gathered} h=(1)/(4)(a+b), \\ h=2(1)/(2). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/m52cx1msy7ddo6801j3xqw1u2701gv2gmj.png)
Therefore:
![((a+b))/(2)=2((a+b)/(4))=2h=2(2+(1)/(2))=4+1=5.](https://img.qammunity.org/2023/formulas/mathematics/high-school/2b9ald6560ovidaf7q8n7t2pw9vze1w69o.png)
Substituting in the above formula, we get:
![A=(5)/(2)*(2(1)/(2)).](https://img.qammunity.org/2023/formulas/mathematics/high-school/fa2eil4pxfl2cvxobkb12s02pefvvewfkg.png)
Simplifying the above result, we get:
![A=(25)/(4)ft^2.](https://img.qammunity.org/2023/formulas/mathematics/high-school/zbh716obom2h2jwz9iotafpdvv0flmqlgf.png)
Answer:
![\begin{gathered} A=(1)/(2)(2(1)/(2))(2(1)/(2)\cdot2) \\ =(1)/(2)((5)/(2))((5)/(2)\cdot2) \\ =(50)/(8)=(25)/(4)=6.25ft^2. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/blgmpvfsjfd6tplaedlv0vuz721c3ybs6q.png)