Consider first the general case of the equation
![ax^2+bx+c\text{ =0}](https://img.qammunity.org/2023/formulas/mathematics/college/yx3eb6v5obay5pnynlbv0oku0555e7n73l.png)
The general formula that solves this problem is given by
![x\text{ = }\frac{-b\text{ }\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/high-school/m0j8pu24gfymkns6fu51zfx9p2t3dh87jg.png)
In this case, the number of real solutions depends on the value that is inside the square root. For it to have a real value, it must happen that
![b^2-4ac\ge0](https://img.qammunity.org/2023/formulas/mathematics/college/2oqne9afoupe9iusc6bxru90o1fjsjj1xi.png)
So first, let's check if this is our case. In our case a = 2, b = 3 and c = -20.
Then
![b^2-4ac=(3)^2-4\cdot2\cdot(-20)\text{ = 9 +160 = }169\ge0](https://img.qammunity.org/2023/formulas/mathematics/college/upmze5rea0t1f6ip6x742uishp51lvt7ah.png)
So in this case, the equation has real values. Now, recall that
![169=13^2](https://img.qammunity.org/2023/formulas/mathematics/college/b3pqaouhlv5f2bx5bphlxoqjug3epukfj4.png)
So our general solution becomes
![x\text{ = }\frac{-3\pm\sqrt[]{13^2}}{2\cdot2}](https://img.qammunity.org/2023/formulas/mathematics/college/3nayh1vpwva9mq265j3pedr5f9v0l1ez05.png)
Then,
![x\text{ = }\frac{-3\text{ }\pm\text{ 13}}{4}](https://img.qammunity.org/2023/formulas/mathematics/college/hl27f385ybcx0deiw4d590kcywbo47x2j5.png)
The symbol in the middle means that we get one different solution whenever we take either the plus sign of the minus sign. So the first solution would be
![x_{1\text{ }}=(13-3)/(4)\text{ = }(10)/(4)\text{ = }(5)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/yxpbxx33iyxqs498998zvxutzxxds6y8in.png)
And the other solution would be
![x_{2\text{ }}=\text{ }(13+3)/(4)\text{ = }(16)/(4)=4](https://img.qammunity.org/2023/formulas/mathematics/college/nrefzmp37uomnjcl796huq180qgwxolavl.png)