Given:
There are given that the triangle ABC.
Step-by-step explanation:
According to the given triangle:
We can see that the given triangle represents the proportionality theorem:
That means:
If a line parallel to one side of the triangle intersects the other two sides of the triangle, then the line divides these two sides proportionality.
Then,
From the given triangle:
![(CE)/(EB)=(CD)/(DA)](https://img.qammunity.org/2023/formulas/mathematics/college/ikclejbu8yv0p7hnpx4ro6nzs8w95bjs6j.png)
Where,
![\begin{gathered} CD=20 \\ DA=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3y1sm9se43nl050uga4n0ixe9ltlb2m753.png)
Then,
Put the value into the above proportionality:
So,
![\begin{gathered} \begin{equation*} (CE)/(EB)=(CD)/(DA) \end{equation*} \\ (CE)/(EB)=(20)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t1kokqhp5aecpb3g5vpi0zl8wgg5kvcoe0.png)
Then,
![\begin{gathered} (CE)/(EB)=(20)/(8) \\ 8CE=20EB \\ CE=(20EB)/(8)...(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9fed5sz0wsgphogqbp43j1aisumej03qn7.png)
Now,
We need to find the value for EB:
So,
For EB:
![\begin{gathered} (BE)/(BC)=(AD)/(AC) \\ (BE)/(35)(8)/(28) \\ 28BE=280 \\ BE=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nnh7j8zzypb1n71aen1a3yeylxi52r04bs.png)
Then,
Put the value of BE into the equation (1):
So,
![\begin{gathered} \begin{equation*} CE=(20EB)/(8) \end{equation*} \\ CE=(20(10))/(8) \\ CE=(200)/(8) \\ CE=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k1df4hqg2f2fh2pnfktpk0a310buczwwqq.png)
Final answer:
Hence, the value of CE is 25.