28.5k views
2 votes
Find the exact value by using ahalf-angle formula.[?] --cos 75°

Find the exact value by using ahalf-angle formula.[?] --cos 75°-example-1

1 Answer

4 votes

Answer::


\cos 75\degree=\frac{\sqrt[]{2-\sqrt[]{3}}}{2}

Explanation:

By the half-angle formula:


\cos \mleft((\theta)/(2)\mright)=\pm\sqrt[]{(1+\cos\theta)/(2)}

Let θ=150°, therefore:


\begin{gathered} \cos ((150\degree)/(2))=\sqrt[]{(1+\cos150\degree)/(2)} \\ \cos (150)\degree=-\cos (180\degree-150\degree)=-\cos 30\degree \\ \implies\cos ((150\degree)/(2))=\sqrt[]{(1+\cos150\degree)/(2)}=\sqrt[]{(1-\cos30\degree)/(2)} \end{gathered}

Now, cos 30 = √3/2, thus:


\begin{gathered} =\sqrt[]{\frac{1-\frac{\sqrt[]{3}}{2}}{2}} \\ \text{Multiply both the denominator and numerator by 2} \\ =\sqrt[]{\frac{2-\sqrt[]{3}}{4}} \\ =\frac{\sqrt{2-\sqrt[]{3}}}{√(4)} \end{gathered}

The exact value of cos 75° is:


\cos 75\degree=\frac{\sqrt[]{2-\sqrt[]{3}}}{2}

User Gergely Havlicsek
by
4.4k points