Given:
![g(x)=x^2+6x+12](https://img.qammunity.org/2023/formulas/mathematics/college/7w5qkzezwf30bsb2mmnnf8rmsa1waa7vz3.png)
And given interval is
![[a,b]=[-3,5]](https://img.qammunity.org/2023/formulas/mathematics/college/65b68nixjixttnvce4btilpw2u4j2g2fqm.png)
Required:
To find the average rate of change of the given function over the interval −3≤x≤5.
Step-by-step explanation:
To calculate the average rate of change between the 2 points use.
![(g(b)-g(a))/(b-a)](https://img.qammunity.org/2023/formulas/mathematics/college/it4twtmbx8s83cbzky1hclb1kbef2schgl.png)
Here,
![\begin{gathered} g(b)=g(5) \\ \\ =5^2+6*5+12 \\ \\ =25+30+12 \\ \\ =67 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/capybfsppdag0e780olz3npz9tziuzgl9l.png)
![\begin{gathered} g(a)=g(-3) \\ \\ =(-3)^2+6(-3)+12 \\ \\ =9-18+12 \\ \\ =3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gcg4ixf3y3fcbl8e5w4i4wvv8l7gxawzi3.png)
Therefore,
![\begin{gathered} (g(b)-g(a))/(b-a)=(67-3)/(5-(-3)) \\ \\ =(64)/(8) \\ \\ =8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g1rccftb6y6jsif02ux978dqj8dhhj3djh.png)
Final Answer:
The average rate of change of the function over the interval −3≤x≤5 is 8.