205k views
1 vote
If g :R → R is given by g(x) = x2 + 3 , find the function f such that (g. f) (x) = 4x2 + 3. A. 3x B. 4x C. 2x D. None of these

If g :R → R is given by g(x) = x2 + 3 , find the function f such that (g. f) (x) = 4x-example-1
User Kyle Morse
by
3.5k points

1 Answer

1 vote

Given:


\begin{gathered} g(x)=x^2+3_{} \\ (g\circ f)(x)=4x^2+3 \end{gathered}
(g\circ f)(x)=g(f(x)

Let substitute one by one from the given options.


\begin{gathered} g(3x)=(3x)^2+3 \\ g(3x)=9x^2+3 \end{gathered}

3x is not the function f.


\begin{gathered} g(4x)=(4x)^2+3 \\ g(4x)=16x^2+3 \end{gathered}

4x is not the function f.


\begin{gathered} g(2x)=(2x)^2+3 \\ g(2x)=4x^2+3 \end{gathered}

2x is the function f.


f(x)=2x

Option C is the final answer.

User Frostmatthew
by
4.2k points