Answer
Rotate 270 degrees clockwise about the origin → Translate 3 units right and 3 units up → Dilate by a scale factor of 3
Explanation
Rotation 270 degrees clockwise about the origin transforms the point (x, y) into (-y, x). Applying this rule to the vertices of figure A, we get:
(-5, 5) → (-5, -5)
(-4, 4) → (-4, -4)
(-5, 1) → (-1, -5)
(-4, 1) → (-1, -4)
Translation 3 units right and 3 units up transform the point (x, y) into (x+3, y+3). Applying this rule to the previous points, we get:
(-5, -5) → (-5+3, -5+3) → (-2, -2)
(-4, -4) → (-4+3, -4+3) → (-1, -1)
(-1, -5) → (-1+3, -5+3) → (2, -2)
(-1, -4) → (-1+3, -4+3) → (2, -1)
Dilation by a factor of 3 transforms the point (x, y) into (3x, 3y). Applying this rule to the previous points, we get:
(-2, -2) → (3x-2, 3x-2) → (-6, -6)
(-1, -1) → (3x-1, 3x-1) → (-3, -3)
(2, -2) → (3x2, 3x-2) → (6, -6)
(2, -1) → (3x2, 3x-1) → (6, -3)
These vertices coincide with the vertices in figure B