we have the function
![f(x)=x^3-(3)/(2)x^2](https://img.qammunity.org/2023/formulas/mathematics/college/1nai55wqxdrk2dy16rfb5oxdznxkqpb4q8.png)
Find out the first derivative of the given function
![f^(\prime)(x)=3x^2-3x](https://img.qammunity.org/2023/formulas/mathematics/college/3knkrwdjjq8izinld8r2cyb2bnejiawf54.png)
Equate to zero the first derivative
![\begin{gathered} 3x^2-3x=0 \\ 3x(x-1)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vnn3jwct0yk1dp98bjro2xbsmr2dl7rcxx.png)
The values of x are
x=0 and x=1
we have the intervals
(-infinite,0) (0,1) (1,infinite)
Interval (-infinite,0) -----> f'(x) is positive
interval (0,1) ---------> f'(x) is negative
interval (1,infinite) -----> f'(x) is positive
that means
x=0 is a local maximum
x=1 is a local minimum
Find out the y-coordinates of the extreme values
For x=0 -----> substitute in the function f(x) ---------> f(x)=0
For x=1 ------> substitute in the function f(x) ------> f(x)=-0.5
therefore
The extreme values are
local maximum at (0,0)
local minimum at (1,-0.5)