y=-5x-26
Step-by-step explanationthe equation of a line can be written as:
![\begin{gathered} y=mx+b \\ where\text{ m is the slope} \\ and\text{ b is the y-intercept} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e09gijreicswm49vyp7syn2g8w6x0q7hm7.png)
now, when we have the slope and a passing point, we need to use the slope-point formula , it says
![\begin{gathered} y-y_1=m(x-x_1) \\ where\text{ m is the slope and \lparen x}_1,y_1)\text{ is a point from the line} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9vekf04r0jcoixwezy4y0dccvlrwzmoixl.png)
so
Step 1
a)let
![\begin{gathered} slope=-5 \\ (x_1,y_1)=(-7,9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pdocxxhuqag1yp8r032vg5v3r57sz3r51n.png)
b) now replace in the slope-point formula and solve for y
![\begin{gathered} y-y_(1)=m(x-x_(1)) \\ replace \\ y-9=-5(x-(-7)) \\ y-9=-5(x+7) \\ y-9=-5x-35 \\ add\text{ 9 in both sides} \\ y-9+9=-5x-35+9 \\ y=-5x-26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cw8realwb22114enryzfj27zbgf96a4fy9.png)
therefore, the equaton of the line is
y=-5x-26
I hope this helps you