Answer:
![x=(34)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/xvfvjzy4rq0uf35rzkebn4yc5rg50qno96.png)
Explanations:
Given the function defined as:
![\begin{gathered} f(x)=-7+(-8)/(x-6) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u21li1jd62debe63va667wg4rqm1ra31sy.png)
The function can further be expressed as:
![f(x)=-7-(8)/(x-6)](https://img.qammunity.org/2023/formulas/mathematics/college/g8e4j5ier9kz6jbpaox7uvvogxzo8uc7tm.png)
Find the LCM of the function;
![\begin{gathered} f(x)=(-7(x-6)-8)/(x-6) \\ f(x)=(-7x+42-8)/(x-6) \\ f(x)=(-7x+34)/(x-6) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/80io4r513bqd35yxyetkiixzdrtkkoc1ak.png)
If f(x) = 0, then the value of x is calculated as:
![\begin{gathered} (-7x+34)/(x-6)=0 \\ -7x+34=0 \\ -7x=0-34 \\ -7x=-34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6t4vpu6z5jahaii1yrtqwk20opdwmxebee.png)
Divide both sides of the equation by -7:
![\begin{gathered} \frac{\cancel{-7}x}{\cancel{-7}}=\frac{\cancel{-}34}{\cancel{\square}7} \\ x=(34)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3gjuba1k67pckoq30s2tciybkpd541ya29.png)
Therefore the value of x if f(x) = 0 is 34/7