SOLUTION
We will be using the annual compound interest formula to solve this question.
![\begin{gathered} A=P(1+(R)/(100))^(mn) \\ \text{where m=1, n=25years, R=6.5,} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6m200yb89tth9bqon0i99czd2rrkqer3lk.png)
After a down payment of 0.15 x $225,000 = $33750
The principal value will be $225,000 - $33750 = $191250
Put all these values into the compound interest formula above,
we will have:
![\begin{gathered} A=191250(1+(6.5)/(100))^(1*25) \\ A=191250(1+0.065)^(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v2h4hlnch6jmrhrdifecjag3tl6snt8qbg.png)
![\begin{gathered} A=191250(1.065)^(25) \\ \text{ = 191250}*4.8277 \\ \text{ =923,297.63} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ou43kutd8aq43e6xcoqqnr85pkaumn8ihy.png)
The mortgage total if they finance the closing costs will be:
$923,297.63