Given:
• Number of turns, N = 228
,
• Diameter, d = 24.506 cm
,
• θ = 27 degrees
,
• Initial Magnetic field, B1 = 0.807 T
,
• Final, B2 = 4.68 T
,
• Time , t = 13.843 s
Let's find the induced emf in the coil.
To find the induced EMF, apply Faraday's law:
![\begin{gathered} E=N(d)/(dt)(B*A) \\ \\ E=N*Acos\theta(d)/(dt)(B) \\ \\ E=N*(\pi r^2)cos\theta((B_2-B_1)/(t)) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/s4fjm85j60nhf053z2e8hdpirngujfohu8.png)
Where:
A is the area in meters.
Rewrite the diameter from cm to meters.
Where:
100 cm = 1 meters
24.056 cm = 0.24506 m
Now, the radius will be:
radius = diameter/2 = 0.24506/2 = 0.12253 m
Now, plug in the values and solve for E:
![\begin{gathered} E=228*(\pi *(0.12253)^2)cos(27)*((4.68-0.807)/(13.843)) \\ \\ E=228*0.0471666*cos(27)*0.27978 \\ \\ E=2.6\text{ volts} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/lwggl8vtw8xxxjx2ttus07wjpyxbrhv4x9.png)
Therefore, the EMF induced in the coil is 2.6 volts.
ANSWER:
2.6 v