56.7k views
2 votes
This data is from a sample. Calculate the mean, standard deviation, and variance. Suggestion: usetechnology. Round answers to two decimal places.х23.542.131.116.321.132.144.813.529.9Mean?Standard deviation?Variance?Ooops - now you discover that the data was actually from a population! So now you must give thepopulation standard deviationPopulation Standard Deviation?

User Lcguida
by
4.3k points

1 Answer

7 votes
Sample

Mean

The formula to find the mean of a data set is:


\begin{gathered} \bar{x}=\frac{\text{Sum of all the items}}{\text{ Number of items}} \\ \text{ Where }\bar{\text{x}}\text{ is the mean of a sample} \end{gathered}

So, in this case, we have:


\begin{gathered} \bar{x}=(23.5+42.1+31.1+16.3+21.1+32.1+44.8+13.5+29.9)/(9) \\ \bar{x}=(254.4)/(9) \\ \bar{x}=28.27 \end{gathered}

Therefore, the mean of the given data set rounded to two decimal places is 28.27.

Standard deviation

The sample standard deviation formula is:


\begin{gathered} s=\sqrt[]{\frac{\sum ^n_(i\mathop=1)(x_i-\bar{x})^2}{n-1}} \\ \text{ Where} \\ \text{ n is the number of data points} \\ x_i\text{ is each of the values of the data} \\ \bar{x}\text{ is the mean of the data set} \end{gathered}

So, in this case, we have:


\begin{gathered} s=\sqrt[]{((23.5-28.27)^2+(42.1-28.27)^2+(31.1-28.27)^2+(16.13-28.27)^2+(21.1-28.27)^2+(32.1-28.27)^2+(44.8-28.27)^2+(13.5-28.27)^2+(29.9-28.27)^2)/(8)} \\ s=\sqrt[]{((-4.77)^2+(13.83)^2+(2.83)^2+(-11.97)^2+(-7.17)^2+(3.83)^2+(16.53)^2+(-14.77)^2+(1.63)^2)/(8)} \\ s=\sqrt[]{(22.72+191.36+8.03+143.2+51.36+14.69+273.35+218.05+2.67)/(8)} \\ s=\sqrt[]{(925.44)/(8)} \\ s=\sqrt[]{115.68} \\ s=10.76 \end{gathered}

Therefore, the sample standard deviation of the given dataset rounded to two decimal places is 10.76.

Variance

The standard deviation is the square root of the variance. Thus, the formula to find the variance of a sample is,


s^2=\frac{\sum^n_{i\mathop{=}1}(x_i-\bar{x})^2}{n-1}

So, in this case, we have:


s^2=115.68

Therefore, the sample variance of the given dataset rounded to two decimal places is 115.68.

Population

Standard deviation

The population standard deviation formula is:


\begin{gathered} \sigma=\sqrt[]{\frac{\sum ^n_{i\mathop{=}1}(x_i-\bar{x})^2}{N}} \\ \text{Where} \\ \sigma\text{ is the population standard deviation} \\ x_i\text{ is each of the values of the data} \\ N\text{ is the number of data points} \end{gathered}

So, in this case, we have:


\begin{gathered} s=\sqrt[]{((23.5-28.27)^2+(42.1-28.27)^2+(31.1-28.27)^2+(16.13-28.27)^2+(21.1-28.27)^2+(32.1-28.27)^2+(44.8-28.27)^2+(13.5-28.27)^2+(29.9-28.27)^2)/(9)} \\ s=\sqrt[]{((-4.77)^2+(13.83)^2+(2.83)^2+(-11.97)^2+(-7.17)^2+(3.83)^2+(16.53)^2+(-14.77)^2+(1.63)^2)/(9)} \\ s=\sqrt[]{(22.72+191.36+8.03+143.2+51.36+14.69+273.35+218.05+2.67)/(9)} \\ s=\sqrt[]{(925.44)/(9)} \\ s=\sqrt[]{102.83} \\ s=10.14 \end{gathered}

Therefore, the population standard deviation of the given dataset rounded to two decimal places is 10.14.

User Max Song
by
4.3k points