211,758 views
1 vote
1 vote
I can't figure out how to do (i + j) x (i x j)for vector calc

User Ted Bigham
by
3.1k points

1 Answer

6 votes
6 votes

In three dimensions, the cross product of two vectors is defined as shown below


\begin{gathered} \vec{A}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k} \\ \vec{B}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k} \\ \Rightarrow\vec{A}*\vec{B}=\det (\begin{bmatrix}{\hat{i}} & {\hat{j}} & {\hat{k}} \\ {a_1} & {a_2} & {a_3} \\ {b_1} & {b_2} & {b_3}\end{bmatrix}) \end{gathered}

Then, solving the determinant


\Rightarrow\vec{A}*\vec{B}=(a_2b_3-b_2a_3)\hat{i}+(b_1a_3+a_1b_3)\hat{j}+(a_1b_2-b_1a_2)\hat{k}

In our case,


\begin{gathered} (\hat{i}+\hat{j})=1\hat{i}+1\hat{j}+0\hat{k} \\ \text{and} \\ (\hat{i}*\hat{j})=(1,0,0)*(0,1,0)=(0)\hat{i}+(0)\hat{j}+(1-0)\hat{k}=\hat{k} \\ \Rightarrow(\hat{i}*\hat{j})=\hat{k} \end{gathered}

Where we used the formula for AxB to calculate ixj.

Finally,


\begin{gathered} (\hat{i}+\hat{j})*(\hat{i}*\hat{j})=(1,1,0)*(0,0,1) \\ =(1\cdot1-0\cdot0)\hat{i}+(0\cdot0-1\cdot1)\hat{j}+(1\cdot0-0\cdot1)\hat{k} \\ \Rightarrow(\hat{i}+\hat{j})*(\hat{i}*\hat{j})=1\hat{i}-1\hat{j} \\ \Rightarrow(\hat{i}+\hat{j})*(\hat{i}*\hat{j})=\hat{i}-\hat{j} \end{gathered}

Thus, (i+j)x(ixj)=i-j

User Patrickfdsouza
by
3.1k points