176.4
Step-by-step explanationas the triangle are similar we can set a proportion
Step 1
find the YZ value
a) let
![ratio1=\frac{hypotenuse}{rigth\text{ side}}](https://img.qammunity.org/2023/formulas/mathematics/college/570xx4il9l8s9mlu10xd1qdkegbocv9t51.png)
so,for triangle XZW
![ratio=(40+32)/(28+YZ)](https://img.qammunity.org/2023/formulas/mathematics/college/jz3111wzxdjgnoskq16uh51yktu3cbzlp1.png)
and for triangle XYV
![ratio=(40)/(28)](https://img.qammunity.org/2023/formulas/mathematics/college/8aonmzbsp89363ay41osx52vlu1ove64xt.png)
as the ratios are equal, we can set a proportion
![(40+32)/(28+YZ)=(40)/(28)](https://img.qammunity.org/2023/formulas/mathematics/college/r524kgtn6aj41vxvpiqztk1h8cx2vx8cy6.png)
b) now,solve for YZ
![\begin{gathered} (40+32)/(28+YZ)=(40)/(28) \\ (72)/(28+YZ)=(40)/(28) \\ cross\text{ multiply} \\ 72*28=40(28+YZ) \\ 2016=1120+40YZ \\ subtract\text{ 1120 in both sides} \\ 2016-1120=1120+40YZ-1120 \\ 896=40YZ \\ divide\text{ bothsides by 40} \\ (896)/(40)=(40YZ)/(40) \\ 22.4=YZ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3f4u1x3h534w0sqg087khlyizbnlrkdw2p.png)
so
YZ=22.4
Step 2
find the length of the side WZ
a) let
![ratio=\frac{hypotenuse\text{ }}{base}](https://img.qammunity.org/2023/formulas/mathematics/college/jgknqeyndp98c4p6knl756r6yuszmnibqq.png)
hence
![\begin{gathered} ratio_1=(40+32)/(WZ)=(72)/(WZ) \\ ratio_2=(40)/(30) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rqspyiegoan7kqokwnlyrkyt52q3ean81j.png)
set the proportion and solve for YZ
![\begin{gathered} ratio_1=\text{ ratio}_2 \\ (72)/(WZ)=(40)/(30) \\ cross\text{ multiply} \\ 72*30=40WZ \\ 2160=40WZ \\ divide\text{ both sides by 40} \\ (2160)/(40)=(40WZ)/(40) \\ 54=WZ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sprkgvx86nqke25r9hfsi9649z1ckestdl.png)
Step 3
finally, find the perimeter of triangle XZW
Perimeter is the distance around the edge of a shape,so
![Perimeter_(\Delta XZW)=XY+YZ+ZW+WV+VX](https://img.qammunity.org/2023/formulas/mathematics/college/xuj5wyttbwsuzqqzv66avb4kwqvunoy8tg.png)
replace and calculate
![\begin{gathered} Per\imaginaryI meter_(\Delta XZW)=XY+YZ+ZW+WV+VX \\ Perimeter_(\Delta XZW)=28+22.4+54+32+40 \\ Perimeter_(\Delta XZW)=176.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9y5g38vm5td5xf668rrto9zf037m20mq1n.png)
therefore, the answer is
176.4
I hope this helps you