Answer:
Step-by-step explanation:
It is not very likely that the total amount of water at Earth’s surface has changed significantly over geologic time. Based on the ages of meteorites, Earth is thought to be 4.6 billion years old. The oldest rocks known are 3.9 billion to 4.0 billion years old, and these rocks, though altered by post-depositional processes, show signs of having been deposited in an environment containing water. There is no direct evidence for water for the period between 4.6 billion and 3.9–4.0 billion years ago. Thus, ideas concerning the early history of the hydrosphere are closely linked to theories about the origin of Earth.
Earth is thought to have accreted from a cloud of particles around the Sun. This gaseous matter condensed into small particles that coalesced to form a protoplanet, which in turn grew by the gravitational attraction of more particulates. Some of these particles had compositions similar to that of carbonaceous chondrite meteorites, which may contain up to 20 percent water. Heating of this initially cool, unsorted conglomerate by the decay of radioactive elements and the conversion of kinetic and potential energy to heat resulted in the development of Earth’s liquid iron core and the gross internal zonation of the planet (i.e., differentiation into core, mantle, and crust). It has been concluded that Earth’s core formed over a period of about 500 million years. It is likely that core formation resulted in the escape of an original primitive atmosphere and its replacement by one derived from the loss of volatile substances from the planetary interior (see evolution of the atmosphere).