Given:
COA is a diameter
O is the origin
OA = 1
m< BOA = 30
Re-drawing the diagram to show the coordinates of the B:
Let the coordinates of B be (x,y)
Using trigonometric ratio, we can find the length of side AB
From trigonometric ratio, we have:
![tan\text{ }\theta\text{ = }(opposite)/(adjacent)](https://img.qammunity.org/2023/formulas/mathematics/college/ll0izntdvtuyv0nb36q69bvmjn1ur1vsuf.png)
Substituting we have:
![\begin{gathered} tan\text{ 30 = }(y)/(1) \\ Cross-Multiply \\ y\text{ = tan30 }*\text{ 1} \\ y\text{ = 0.577} \\ y\text{ }\approx\text{ 0.58} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oardvna3jnv6hvab68sp1f5yv8bgfjj54r.png)
Hence, the coordinates of B is (1, 0.58)