The work required to stretch a string is given by the following equation:
![W=(1)/(2)kx^2](https://img.qammunity.org/2023/formulas/physics/college/hmma2wly4hpxvej7drhul6xhbt02kcjeq8.png)
Where:
![\begin{gathered} k=\text{ string constant} \\ x=\text{ distance the string is stretched} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/2fb9v5hemmtw10eifth75muop6m7igp6lb.png)
If the string is stretched 2 cm then we substitute the value of "x = 2" in the formula, we get:
![W_2=(1)/(2)k(2)^2](https://img.qammunity.org/2023/formulas/physics/college/lji11icfgvca2efbzh7a7a46oedb6ui4zy.png)
Solving the square and simplifying:
![W_2=2k](https://img.qammunity.org/2023/formulas/physics/college/d1t8cr5654o06fozb4vd32fintm4a04rch.png)
Now, if the string is stretched 1 cm we get:
![W_1=(1)/(2)k(1)^2](https://img.qammunity.org/2023/formulas/physics/college/exwufah2mfhhtvosvg1rpnidl9qkage1nz.png)
Solving the operations:
![W_1=(1)/(2)k](https://img.qammunity.org/2023/formulas/physics/college/2szj242mk9chf7h752jokzhyw6jsf4ummf.png)
Now, we determine the quotient between W2 and W1:
![(W_2)/(W_1)=(2k)/((1)/(2)k)](https://img.qammunity.org/2023/formulas/physics/college/nuwsz3woqdr3gzbe24x8ig3hfmfgo57icv.png)
Simplifying we get:
![(W_2)/(W_1)=4](https://img.qammunity.org/2023/formulas/physics/college/p0ef489dyhxdb9i9a8tdu095dt7o1k8zo7.png)
Now, we multiply both sides by W2:
![W_2=4W_1](https://img.qammunity.org/2023/formulas/physics/college/6t7hld6ddrkqczsqis3oum8yte0yf8fs1u.png)
Therefore, the work required to stretch the string 2 cm is 4 times the work to stretch it 1 cm.