ANSWER
![-(5)/(13)-(14i)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/w00iqanms241t8z3yvptnh297anllcl4cf.png)
Step-by-step explanation
We want to divide the given complex fraction:
![(4+i)/(-2+3i)](https://img.qammunity.org/2023/formulas/mathematics/college/i4rlnyk5r2vrloyaz3h140d6iqs0pbun9m.png)
To do this, we have to rationalize the denominator of the fraction by multiplying the given fraction by another fraction made up of the conjugate of the denominator of the given fraction:
![(4+i)/(-2+3i)\cdot(-2-3i)/(-2-3i)](https://img.qammunity.org/2023/formulas/mathematics/college/4akrtuseh5ldcfz8u3onz0pm70mge42c8x.png)
Simplifying this, we have:
![\begin{gathered} ((4+i)(-2-3i))/((-2+3i)(-2-3i)) \\ \Rightarrow(-8-12i-2i+3)/(4+6i-6i+9) \\ (-8+3-12i-2i)/(13)=(-5-14i)/(13) \\ \Rightarrow-(5)/(13)-(14i)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y535k9czg2kt831goxoo0r13vne7t0p2gl.png)
That is the solution of the division.