64.9k views
0 votes
Find the mean for the data set. 6, 14, 7, 4, 12, 8, 13, 4, 18, 14

Find the mean for the data set. 6, 14, 7, 4, 12, 8, 13, 4, 18, 14-example-1
Find the mean for the data set. 6, 14, 7, 4, 12, 8, 13, 4, 18, 14-example-1
Find the mean for the data set. 6, 14, 7, 4, 12, 8, 13, 4, 18, 14-example-2
User Egordoe
by
3.7k points

1 Answer

3 votes

Answer:

Concept:

Mean is just another name for average. To find the mean of a data set, add all the values together and divide by the number of values in the set. The result is your mean!

The values are given below as


6,14,7,4,12,8,13,4,18,14

The image below shows how to calculate the mean

By substituting values, we will have


\begin{gathered} \bar{x}=\frac{\sum ^{}_(n\mathop=0)x}{n} \\ n=10 \end{gathered}
\begin{gathered} \bar{x}=(6+14+7+4+12+8+13+4+18+14)/(10) \\ \bar{x}=(100)/(10) \\ \bar{x}=10 \end{gathered}

Hence,

The mean = 10

To calculate the variance, we will use the formula below


^{}\sigma^2=\frac{\sum ^(\infty)_(n\mathop=0)(x-\bar{x})^2}{n}
\begin{gathered} \sigma^2=\frac{\sum ^(\infty)_{n\mathop{=}0}(x-\bar{x})^2}{n} \\ (x-\bar{x})^2=(6-10)^2+(14-10)^2+(7-10)^2+(4-10)^2+(12-10)^2+(8-10)^2+(13-10)^2+(4-10)^2+(18-10)^2+(14-10)^2 \\ (x-\bar{x})^2=16+16+9+36+4+4+9+36+64+16 \\ (x-\bar{x})^2=210 \end{gathered}
\begin{gathered} \sigma^2=\frac{\sum ^(\infty)_{n\mathop{=}0}(x-\bar{x})^2}{n} \\ \sigma^2=(210)/(10) \\ \sigma^2=(210)/(10) \\ \sigma^2=21 \end{gathered}

Hence

The variance = 21

To calculate the standard deviation,


\begin{gathered} \sigma=\sqrt[]{variance} \\ \sigma=\sqrt[]{21} \\ \sigma=4.58 \end{gathered}

Hence,

The standard deviation is = 4.58

Find the mean for the data set. 6, 14, 7, 4, 12, 8, 13, 4, 18, 14-example-1
User Jeff Hellman
by
4.9k points