We have to find the parameter a of a quadratic equation knowing the following
• The vertex is (3,-6).
,
• A random point is (-7,14).
Based on the given information, we have the following
![\begin{gathered} h=3 \\ k=-6 \\ x=-7 \\ y=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v5a39s7f6n1vkqe4az8b5vxl8zoob8b3ed.png)
The vertex form of a quadratic equation is
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
Replacing all the givens, we have
![14=a(-7-3)^2-6](https://img.qammunity.org/2023/formulas/mathematics/college/w30xgonx7a4dmcmh4y05fo133g170ppj3k.png)
Now, we solve for a
![\begin{gathered} 14=a(-10)^2-6 \\ 14=a(100)-6 \\ 14+6=100a \\ 100a=20 \\ a=(20)/(100)=(1)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zabdizgw8necnqrnpsmlbg6a0bpeu91llt.png)
Therefore, a is equal to 1/5.