Step 1
Given the triangle, ABC translated to A'B'C'
Required to find the algebraic description that maps triangle ABC and A'B'C'
Step 2
The coordinates of points A, B,C are in the form ( x,y)
Hence
![\begin{gathered} A\text{ has a coordinate of ( -3,-2)} \\ B\text{ has a coordinate of (-6,-5)} \\ C\text{ has a coordinate of (-1,-4)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2qw6jsvvon5hzvpwy8q4u9uglous3r8qqi.png)
Step 3
Find the algebraic description that maps triangle ABS TO A'B'C'
![\begin{gathered} A^(\prime)\text{ has a coordinate of (5,2)} \\ B^(\prime)\text{ has a coordinate of ( 2,-1)} \\ C^(\prime)\text{ has a coordinate of ( 7, 0)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ntef649twa8c9y0zgui61skysj3uxhcgt7.png)
The algebraic description is found using the following;
![\begin{gathered} (A^(\prime)-A^{})=(x^(\prime)-x,\text{ y'-y)} \\ OR \\ (B^(\prime)-B)=(x^(\prime)-x,\text{ y'-y)} \\ OR \\ (C^(\prime)-C)=(x^(\prime)-x,\text{ y'-y)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/em82mset1jvi6m0tnsvf1ptug249m22kkf.png)
Hence,
![\begin{gathered} =\text{ ( 5-(-3)), (2-(-2))} \\ =(8,4) \\ \text{Hence the algebraic description from triangle ABC to A'B'C' will be } \\ =(x,y)\Rightarrow(x\text{ + 8, y+4)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lcd0gd0evewh5npe6os8t29bs6vx4e0smi.png)
Hence the answer is option B