24.5k views
11 votes
Evaluate the indefinite integral using substitution method.


\displaystyle \large{\int {(x-2)√(3-x)} \ dx }

User Zskalnik
by
3.5k points

1 Answer

8 votes


\frac{2(3 - x)^{ (5)/(2) } }{5} - \frac{2(3 - x)^{ (3)/(2) } }{3} + Cis the answer

Explanation:-

Given:


{\int {(x-2)√(3-x)} \ dx }

Differentiate on both sides,


{\int {(x-2)√(3-x)} \ dx },u = 3 - x

Isolate and substitute back,


{\int {(x-2)√(3-x)} \ * ( - 1) du },u = 3 - x

Substitute back,


{\int ( - ( - u + 3 - 2) √(u))du }

Applying property of integral kf(x)dx = kf(x)dxdx,


- ∫ ( - u + 3 - 2) √(u) \: du,u = 3 - x

Combining like terms,


- ∫ ( - u +1) √(u) \: du,u = 3 - x

Now applying distributive property,


- ∫ (( - u +1) √(u)) \: du,u = 3 - x


= > - ∫ ( - √(u) * u + √(u) )\: du,u = 3 - x

Converting to exponential form,


- ∫ ( - u^{ (1)/(2) } * u + u^{ (1)/(2) } )\: du,u = 3 - x

Multiplying the first two monomuals after integral, we get,


- ∫ ( - u^{ (3)/(2) } + u^{ (1)/(2) } )\: du,u = 3 - x

Now applying the prperty of ∫ f(x) + g(x)dx = ∫ f(x)dx + ∫ g(x)dx,


- ( - ∫u^{ (3)/(2) } \: du + ∫u^{ (1)/(2) } \: du),u = 3 - x

Now integrate the power rule,


- ( - \frac{u^{ (5)/(2) }}{ (5)/(2) } + \frac{u^{ (3)/(2) }}{ (3)/(2) } ),u = 3 - x

Divide the fractions by multiplying its reciprocals,


- ( - u^{ (5)/(2) } * (2)/(5) + u^{ (3)/(2) } * (2)/(3)),u = 3 - x

Now write as single fractions,


- ( - \frac{2u^{ (5)/(2) } }{5} + \frac{2u^{ (3)/(2) } }{3})

Removing the parentheses,


\frac{2u^{ (5)/(2) } }{5} - \frac{2u^{ (3)/(2) } }{3},u = 3 - x

Substitute back,


\frac{2(3 - x)^{ (5)/(2) } }{5} - \frac{2(3 - x)^{ (3)/(2) } }{3}

Now adding the constant of integration C∈R,


\frac{2(3 - x)^{ (5)/(2) } }{5} - \frac{2(3 - x)^{ (3)/(2) } }{3} + C

Hence, the answer.

User Matthid
by
2.9k points