345,307 views
13 votes
13 votes
Prouvez par récurrence que quel que soit n EN\{0}, on a

1/1.2 + 1/2.3 + …. + 1/ n.(n+1) v= 1- 1/n+1

User Ollien
by
3.1k points

1 Answer

21 votes
21 votes

The left side is equivalent to


\displaystyle \sum_(k=1)^n \frac1{k(k+1)}

When n = 1, we have on the left side


\displaystyle \sum_(k=1)^1 \frac1{k(k+1)} = \frac1{1\cdot2} = \frac12

and on the right side,


1 - \frac1{1+1} = 1 - \frac12 = \frac12

so this case holds.

Assume the equality holds for n = N, so that


\displaystyle \sum_(k=1)^N \frac1{k(k+1)} =1 - \frac1{N+1}

We want to use this to establish equality for n = N + 1, so that


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - \frac1{N+2}

We have


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = \sum_(k=1)^N \frac1{k(k+1)} + \frac1{(N+1)(N+2)}


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - \frac1{N+1} + \frac1{(N+1)(N+2)}


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - (N+2)/((N+1)(N+2)) + \frac1{(N+1)(N+2)}


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - (N+1)/((N+1)(N+2))


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - \frac1{N+2}

and this proves the claim.

User JohnWrensby
by
2.8k points