468,971 views
13 votes
13 votes
Prove the following


\sf \cos \bigg( (3\pi)/(2) + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( (3\pi)/(2) - x \bigg) + cot(2\pi + x) \bigg \} = 1

- Required step by step explanation
- Spam will be reported on spot.​



User Kiran Kulkarni
by
2.7k points

2 Answers

8 votes
8 votes

Explanation:

Hence,


\boxed{\tt{ \cos \bigg( (3\pi)/(2) + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( (3\pi)/(2) - x \bigg) + cot(2\pi + x) \bigg \} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

User DEarTh
by
3.1k points
10 votes
10 votes

Answer:

Explanation:


\large\underline{\sf{Solution-}}

Consider


\rm \: \cos \bigg( (3\pi)/(2) + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( (3\pi)/(2) - x \bigg) + cot(2\pi + x) \bigg \}cos(23π+x)cos(2π+x)

We Know,


\rm \: \cos \bigg( (3\pi)/(2) + x \bigg) = sinx


\rm \: {cos \: (2\pi + x) }


\rm \: \cot \bigg( (3\pi)/(2) - x \bigg) \: = \: tanx


\rm \: cot(2\pi + x) \: = \: cotx

So, on substituting all these values, we get


\rm \: = \: sinx \: cosx \: (tanx \: + \: cotx)


\rm \: = \: sinx \: cosx \: \bigg((sinx)/(cosx) + (cosx)/(sinx)


\rm \: = \: sinx \: cosx \: \bigg(\frac{ {sin}^(2)x + {cos}^(2)x}{cosx \: sinx}


\rm \: = \: 1=1

Hence,


\boxed{\tt{ \cos \bigg( (3\pi)/(2) + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( (3\pi)/(2) - x \bigg) + cot(2\pi + x) \bigg \} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION :-

Sign of Trigonometric ratios in Quadrants

  • sin (90°-θ) = cos θ
  • cos (90°-θ) = sin θ
  • tan (90°-θ) = cot θ
  • csc (90°-θ) = sec θ
  • sec (90°-θ) = csc θ
  • cot (90°-θ) = tan θ
  • sin (90°+θ) = cos θ
  • cos (90°+θ) = -sin θ
  • tan (90°+θ) = -cot θ
  • csc (90°+θ) = sec θ
  • sec (90°+θ) = -csc θ
  • cot (90°+θ) = -tan θ
  • sin (180°-θ) = sin θ
  • cos (180°-θ) = -cos θ
  • tan (180°-θ) = -tan θ
  • csc (180°-θ) = csc θ
  • sec (180°-θ) = -sec θ
  • cot (180°-θ) = -cot θ
  • sin (180°+θ) = -sin θ
  • cos (180°+θ) = -cos θ
  • tan (180°+θ) = tan θ
  • csc (180°+θ) = -csc θ
  • sec (180°+θ) = -sec θ
  • cot (180°+θ) = cot θ
  • sin (270°-θ) = -cos θ
  • cos (270°-θ) = -sin θ
  • tan (270°-θ) = cot θ
  • csc (270°-θ) = -sec θ
  • sec (270°-θ) = -csc θ
  • cot (270°-θ) = tan θ
  • sin (270°+θ) = -cos θ
  • cos (270°+θ) = sin θ
  • tan (270°+θ) = -cot θ
  • csc (270°+θ) = -sec θ
  • sec (270°+θ) = cos θ
  • cot (270°+θ) = -tan θ
User Rajeev Shenoy
by
2.4k points