Take into account that in a general way, a parabola can be written as follow:
y = a(x - h)^2 + k
where,
a: is the leadding coefficient
(h,k): vertex of the parabola
In order to graph the parabola, first calculate the value of a, by using the following information:
(h,k) = (0,-2)
(x,y) = (5,8)
Replace the previous values into the equation of the parabola and solve for a:
![\begin{gathered} 8=a(5-0)^2-2 \\ 8=25a-2 \\ a=(8+2)/(25)=(10)/(25)=(2)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5akpc5uywfjdfwt97c7l6hu3hp4h9r5rgs.png)
Then, the equation of the given parabola is:
![\begin{gathered} y=(2)/(5)(x-0)^2-2 \\ y=(2)/(5)x^2-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xpxh7bzd7mgtohj1kuzu6t6sfjsce1cup1.png)
Another point could be:
x = -2
![\begin{gathered} y=(2)/(5)(-2)^2-2 \\ y=(2)/(5)(4)-2 \\ y=(8)/(5)-2 \\ y=-(2)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nco6mbx9t1vz3vxfycafhvdsq9fzny40c6.png)
the point is (-2,-2/5).
Then, the graph is: