27.6k views
3 votes
A fridge uses about 200 watts of power. This means that the fridge uses 200 joules per second of energy. If managed to turn 1 g of matter into energy, according to Einstein's equation E = mc², how long would I be able to power my fridge with that energy?​

User Sorin Lica
by
3.7k points

1 Answer

1 vote

Answer:

Approximately
4.50 * 10^(11)\; {\rm s}.

Step-by-step explanation:

The speed of light is
c \approx 3.00* 10^(8)\; {\rm m\cdot s^(-1)}.

Note that the standard unit of energy, joule, is a derived unit. In terms of the standard base units:


\begin{aligned}1\; {\rm J} &= (1\; {\rm N})\, (1\; {\rm m}) \\ &= (1\; {\rm kg \cdot m \cdot s^(-2)})\, (1\; {\rm m}) \\ &= 1\; {\rm kg \cdot m^(2) \cdot s^(-2)} \end{aligned}.

Apply unit conversion and ensure that the unit of mass is in the standard unit kilogram (
{\rm kg}):


\begin{aligned} m &= 1\; {\rm g} * \frac{1\; {\rm kg}}{10^(3)\; {\rm g}} &= 10^(-3)\; {\rm kg}\end{aligned}.

Apply the equation
E = m\, c^(2) to find the energy equivalent to
m = 10^(-3)\; {\rm kg} of matter:


\begin{aligned}E &= m\, c^(2) \\ &= (10^(-3)\; {\rm kg})\, (3.00 * 10^(8)\; {\rm m\cdot s^(-1)})^(2) \\ &= 9.00* 10^(13)\; {\rm kg \cdot m^(2) \cdot s^(-2)} \\ &= 9.00* 10^(13)\; {\rm J} \end{aligned}.

Divide energy
E by power
P to find the duration
t of the power consumption:


\begin{aligned} t &= (E)/(P) \\ &\approx \frac{9.00 * 10^(13)\; {\rm J}}{200\; {\rm J \cdot s^(-1)}} \\ &= 4.50 * 10^(11)\; {\rm s}\end{aligned}.

In other words, the energy equivalent to
1\; {\rm g} of matter could power this fridge for approximately
4.50 * 10^(11)\; {\rm s}.

User Oliver Mahoney
by
2.7k points