185k views
1 vote
Is (6,-2) and (8,-3); (15,9) and (13,8) parallel

1 Answer

1 vote

keeping in mind that parallel lines have exactly the same slope, let's check for the slope of the lines above


(\stackrel{x_1}{6}~,~\stackrel{y_1}{-2})\qquad (\stackrel{x_2}{8}~,~\stackrel{y_2}{-3}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-3}-\stackrel{y1}{(-2)}}}{\underset{run} {\underset{x_2}{8}-\underset{x_1}{6}}} \implies \cfrac{-3 +2}{2}\implies \boxed{-\cfrac{1}{2}} \\\\[-0.35em] ~\dotfill


(\stackrel{x_1}{15}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{13}~,~\stackrel{y_2}{8}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{8}-\stackrel{y1}{9}}}{\underset{run} {\underset{x_2}{13}-\underset{x_1}{15}}} \implies \cfrac{-1}{-2}\implies \boxed{\cfrac{1}{2}} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \textit{different slopes, \underline{not parallel}}~\hfill

User Diemauerdk
by
4.6k points