438,927 views
23 votes
23 votes
Find range of the real function


f = \left \{ \bigg(x, \: \frac{ {x}^(2) }{ {x}^(2) + 1} \bigg) : x \: \in \: R \right \}
from R into R​.

User Jetman
by
2.7k points

1 Answer

20 votes
20 votes

Explanation:


\large\underline{\sf{Solution-}}

Given function is


\rm \longmapsto\:f = \bigg(x, \: \frac{ {x}^(2) }{ {x}^(2) + 1} \bigg) : x \: \in \: R

To find the range of the function f, Let assume that


\rm \longmapsto\:y = \frac{ {x}^(2) }{ {x}^(2) + 1}


\rm \longmapsto\: {yx}^(2) + y = {x}^(2)


\rm \longmapsto\: {yx}^(2) - {x}^(2) = - y


\rm \longmapsto\: - {x}^(2) (1 - y) = - y


\rm \longmapsto\: {x}^(2) (1 - y) = y


\rm \longmapsto\: {x}^(2) = (y)/(1 - y)


\rm\implies \:x = \sqrt{(y)/(1 - y) }

For x to be defined,


\rm \longmapsto\:y \geqslant 0 \: \: and \: \: 1 - y > 0


\rm \longmapsto\:y \geqslant 0 \: \: and \: \: - y > - 1


\rm \longmapsto\:y \geqslant 0 \: \: and \: \: y < 1


\bf\implies \:y \: \in \: [0, \: 1)

Hence,


\bf\implies \:Range \: of \: f \: \in \: [0, \: 1)

User Penartur
by
3.2k points