Answer:
-61
by both methods
Explanation:
Let's first see what the terms direct substitution and synthetic substitution mean.
Direct Substitution
In direct substitution, to find the value of a polynomial f(x) at any point x = k. we simply substitute the value of k into the polynomial function and solve for f(k)
Synthetic Substitution
In synthetic substitution we make use of the Remainder Theorem..
The Remainder Theorem states that when we divide a polynomial
by
, the remainder
equals
![f(c)](https://img.qammunity.org/2023/formulas/mathematics/high-school/py1hn2hhqlp3fepti09idgd5rbuzyyni2r.png)
Solving using direct substitution
The given polynomial is
![f(x) = 3x^5 - x^3 + 6x^2 - x + 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/ipuy91rkfidm3qqe8yprx7gdhmh484jkgr.png)
and we are asked to evaluate this function at
![x = - 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbzobfeii553socaidjgfpxd9y8wktxu0z.png)
Using Direct Substitution,
![f(-2) = =3\left(-2\right)^5-\left(-2\right)^3+6\left(-2\right)^2-\left(-2\right)+1\\\\=3\left(-32\right)-\left(-8\right)+6\left(-2\right)^2-\left(-2\right)+1\\\\=- -96 + 8 + 6(4) + 2 + 1\\=-96 + 8 + 24 + 2 + 1\\\\= -61\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/6m6z3td9z2twjr19n4hx51h438udr3qz8q.png)
Using direct substitution we get
![\bold{f(-2)= -61}](https://img.qammunity.org/2023/formulas/mathematics/high-school/elhzs0oqyoi4np1adrn7ql9x4gbwtqfe7r.png)
Using Synthetic Substitution
Since the remainder when
is divided by
is
, we will divide the polynomial
by
and find out the remainder which will give f(-2)
This is the technique used in synthetic division
Step 1. Write only the coefficients of
in the dividend inside an upside-down division symbol. Write -2 as the divisor on the left of this row
![\begin{matrix}\texttt\:\:-2\\ \;\;\;\;\;\;\;\texttt{\:\:\:\:|\underline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\;\;\;\;\;\;\;\;\;\;\;\;\;}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/48yj7oivc2yvoulz0zkj6cjau32pgi03xw.png)
Step 2
Carry down the leading coefficient as is to below the division symbol
![\begin{matrix}\texttt\:\:-2\\ \;\;\;\;\;\;\;\texttt{\:\:\:\:|\underline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\;\;\;\;\;\;\;\;\;\;\;\;\;}}\\ \texttt{\:\:\:\:\;\;\;\;3\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2vvsi9uaf4d6tftxv4xq3kplr4yzpjnk7j.png)
Step 3
Multiply the above carry-down value by -2 and carry that result to the next column:
![3\left(-2\right)=-6](https://img.qammunity.org/2023/formulas/mathematics/high-school/st7dtanl8fdl9jdiy6b4mp5nhqmwcjijn3.png)
![\begin{matrix}\texttt\:\:\:3\:\:\:\:\:\:\:0\:\:-1\:\:\:6\:\:-1\:\:\:1\\\texttt{\:\:|\ensuremath{\underline{\;\;\;\;\;\:\:\:-6\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}\\\texttt{\:3\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9th13igs6vqtngxu8eotnx1ovax1gnkcem.png)
Step 4
Add down the column
![\begin{matrix}\texttt\:\:\:3\:\:\:\:\:\:\:0\:\:-1\:\:\:6\:\:-1\:\:\:1\\\texttt{\:\:|\ensuremath{\underline{\;\;\;\;\;\:\:\:-6\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}\\\texttt{\:3\:\:\:\:\:\:\:\:-6\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bus0bggjbof01pihaoinlropz2icb4405f.png)
Step 5
Multiply the above carry-down value by -2 and carry that result to the next column:
(-6)(-2) = 12
2 | 3 0 -1 6 -1 1
| -6 12
-------------------------------------------------
3 -6
Step 6
Add down the column
-1 + 12 = 11
2 | 3 0 -1 6 -1 1
| -6 12
-------------------------------------------------
3 -6 11
Repeat this process for the other two coefficients
The final result is
2 | 3 0 -1 6 -1 1
| -6 12 -22 32 -62
-------------------------------------------------
3 -6 11 -16 31 -61
The last carry-down value s the remainder and the value of f(-2) = - 61