Answer:
9 a. This situation represents a linear function because the equation can be written in the form y =mx + b
9 b. The domain is discrete, because the number of extra services must be a whole number.
9c. graph 6 dots at : (0,30) ( 1 ,35 ) ( 2, 40) (3 , 45) (4, 50) (5 , 55)
Explanation:
a. The given function is:
y = 30 + 5x
We know that,
The standard representation of the linear function is:
y = mx + c
Compare the given function with the standard representation
Hence, from the above,
We can conclude that the given situation represents a linear function
b. Find the domain of the function. Is the domain discrete or continuous? Explain.
Answer:
The given function is:
y = 30 + 5x
Where,
y is the amount in dollars
x is the cost of extra grooming services
From the above,
The maximum number of given extra grooming services is: 5
So,
We can use extra grooming service or not
Hence, from the above,
We can conclude that
The domain of the given function is: 0 ≤ x ≤ 5
Hence,
The domain of the given function is continuous
c. Graph the function using its domain.
Answer:
The given function is:
y = 30 + 5x
We know that,
The domain of the function is: 0 ≤ x ≤ 5
So,
y = 30 + 5(0) = 30
y = 30 + 5 (1) = 35
y = 30 + 5(2) = 40
y = 30 + 5 (3) = 45
y = 30 + 5 (4) = 50
y = 30 + 5 (5) = 55