69.0k views
5 votes

\rm \sum_(n = 0)^ \infty \frac{( - 1 {)}^(n) (n + 1)}{(n + 2)n! \cdot {2}^(n - 1) } \\

User MarcinR
by
4.1k points

1 Answer

4 votes

Expand into partial fractions,


(n+1)/(n+2) = ((n+2)-1)/(n+2) = 1 - \frac1{n+2}

and rewrite the sum as


\displaystyle 2 \left(\sum_(n=0)^\infty \frac1{n!} \left(-\frac12\right)^n - \sum_(n=0)^\infty \frac1{n!(n+2)} \left(-\frac12\right)^n\right)

The first sum we recognize as the series expansion of
e^x at
x=-\frac12. For the other sum, let


\displaystyle f(x) = \sum_(n=0)^\infty \frac1{n!(n+2)} x^n

Introduce factors of
x so that differentiating both sides will eliminate the
n+2 in the denominator of the summand.


\displaystyle x^2 f(x) = \sum_(n=0)^\infty \frac1{n!(n+2)} x^(n+2) \\\\ ~~~~ \implies x^2 f'(x) + 2x f(x) = \sum_(n=0)^\infty \frac1{n!} x^(n+1) = xe^x

Solve the differentiating equation for
f, using the initial condition
f(0)=0.


\left(x^2 f(x)\right)' = xe^x \implies x^2 f(x) = (x-1)e^x + C


f(0) = 0 \implies 0 = -1 + C \implies C = 1


\implies f(x) = (x-1)/(x^2) e^x + \frac1{x^2}

Now let
x=-\frac12. We find


\displaystyle 2 \left(\sum_(n=0)^\infty \frac1{n!} \left(-\frac12\right)^n - \sum_(n=0)^\infty \frac1{n!(n+2)} \left(-\frac12\right)^n\right) \\\\ ~~~~~~~~ = 2 \left(e^(-1/2) - \left(4-6e^(-1/2)\right)\right) = \boxed{(14)/(\sqrt e) - 8}

User Lavaturtle
by
3.4k points