80,832 views
44 votes
44 votes
Suppose a, b denotes of the quadratic polynomial x² + 20x - 2022 & c, d are roots of x² - 20x + 2022 then the value of ac(a - c) ad(a - d) + bc(b - c) + (b - d)

Choose the correct option
(a) 0
(b) 8000
(c) 8080
(d) 16000​

User Ashfame
by
2.5k points

1 Answer

12 votes
12 votes

Correct Question :-


\sf\:a,b \: are \: the \: roots \: of \: {x}^(2) + 20x - 2020 = 0 \: and \: \\ \sf \: c,d \: are \: the \: roots \: of \: {x}^(2) - 20x + 2020 = 0 \: then \:


\sf \: ac(a - c) + ad(a - d) + bc(b - c) + bd(b - d) =

(a) 0

(b) 8000

(c) 8080

(d) 16000


\large\underline{\sf{Solution-}}

Given that


\red{\rm :\longmapsto\:a,b \: are \: the \: roots \: of \: {x}^(2) + 20x - 2020 = 0}

We know


\boxed{\red{\sf Product\ of\ the\ zeroes=(Constant)/(coefficient\ of\ x^(2))}}


\rm \implies\:ab = ( - 2020)/(1) = - 2020

And


\boxed{\red{\sf Sum\ of\ the\ zeroes=(-coefficient\ of\ x)/(coefficient\ of\ x^(2))}}


\rm \implies\:a + b = - (20)/(1) = - 20

Also, given that


\red{\rm :\longmapsto\:c,d \: are \: the \: roots \: of \: {x}^(2) - 20x + 2020 = 0}


\rm \implies\:c + d = - (( - 20))/(1) = 20

and


\rm \implies\:cd = (2020)/(1) = 2020

Now, Consider


\sf \: ac(a - c) + ad(a - d) + bc(b - c) + bd(b - d)


\sf \: = {ca}^(2) - {ac}^(2) + {da}^(2) - {ad}^(2) + {cb}^(2) - {bc}^(2) + {db}^(2) - {bd}^(2)


\sf \: = {a}^(2)(c + d) + {b}^(2)(c + d) - {c}^(2)(a + b) - {d}^(2)(a + b)


\sf \: = (c + d)( {a}^(2) + {b}^(2)) - (a + b)( {c}^(2) + {d}^(2))


\sf \: = 20( {a}^(2) + {b}^(2)) + 20( {c}^(2) + {d}^(2))


\sf \: = 20\bigg[ {a}^(2) + {b}^(2) + {c}^(2) + {d}^(2)\bigg]

We know,


\boxed{\tt{ { \alpha }^(2) + { \beta }^(2) = {( \alpha + \beta) }^(2) - 2 \alpha \beta \: }}

So, using this, we get


\sf \: = 20\bigg[ {(a + b)}^(2) - 2ab + {(c + d)}^(2) - 2cd\bigg]


\sf \: = 20\bigg[ {( - 20)}^(2) + 2(2020) + {(20)}^(2) - 2(2020)\bigg]


\sf \: = 20\bigg[ 400 + 400\bigg]


\sf \: = 20\bigg[ 800\bigg]


\sf \: = 16000

Hence,


\boxed{\tt{ \sf \: ac(a - c) + ad(a - d) + bc(b - c) + bd(b - d) = 16000}}

So, option (d) is correct.

User Ahmed Commando
by
3.0k points