Answer:
- Domain: [2, ∞)
- Range: [0, ∞)
- Continuity: Function is continuous on its domain [2, ∞).
- Minimum point at (2, 0).
- Increasing function: (2, ∞)
- Symmetry: Neither as there is no symmetry about the y-axis and no origin symmetry.
Explanation:
Given function:
![y=√(x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/ikm4u7l1p64acgo19blcuusdugq3q2o1xe.png)
Domain
The domain is the set of all possible input values (x-values).
As the square root of a negative number cannot be taken, the domain of the given function is restricted.
![x-2\geq 0 \implies x\geq 2](https://img.qammunity.org/2023/formulas/mathematics/college/z4km9h7920hhstwwlh35ln1ntroueugemi.png)
Therefore, the domain of the given function is [2, ∞).
Range
The range is the set of all possible output values (y-values).
As the square root of a negative number cannot be taken, the range of the given function is restricted.
Therefore, the range of the given function is [0, ∞).
Continuity
A function f(x) is continuous when, for every value
in its domain:
![\text{$f(c)$ is de\:\!fined \quad and \quad $\displaystyle \lim_(x \to c) f(x) = f(c)$}](https://img.qammunity.org/2023/formulas/mathematics/college/uksjfs80vji5ps4qo9h0d29w0xvytu8r2v.png)
Therefore, the function is continuous on its domain [2, ∞).
Maximums and Minimums
Stationary points occur when the gradient of a graph is zero.
Therefore, to find the x-coordinate(s) of the stationary points of a function, differentiate the function, set it to zero and solve for x.
![\begin{aligned}y & = √(x-2)\\& = (x-2)^{(1)/(2)\\\implies \frac{\text{d}y}{\text{d}x} & = (1)/(2)(x-2)^{-(1)/(2)}\\ & = (1)/(2√(x-2))\\\\\frac{\text{d}y}{\text{d}x} & = 0\\\implies (1)/(2√(x-2)) &= 0\\(1)/(2) &\\eq 0\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/6jb6ft64mhfzkquxk5gwz5qjwy24ycmdk9.png)
Therefore, there are no stationary points.
As the domain is restricted and f(x) ≥ 0, the minimum point of the function is at point (2, 0).
Increasing/Decreasing Function
![\textsf{A function is \textbf{increasing} when the \underline{gradient is positive}} \implies \frac{\text{d}y}{\text{d}x} > 0](https://img.qammunity.org/2023/formulas/mathematics/college/1plr7krsglvhm4daipobtr5n3ljeg8nhqi.png)
![\textsf{A function is \textbf{decreasing} when the \underline{gradient is negative}} \implies \frac{\text{d}y}{\text{d}x} < 0](https://img.qammunity.org/2023/formulas/mathematics/college/aso56tavnv5y2bcungh1avrd5tit6ieddh.png)
Increasing
![\begin{aligned}\frac{\text{d}y}{\text{d}x} & > 0 \\ \implies (1)/(2√(x-2)) & > 0 \\ (1)/(√(x-2)) & > 0\\ \textsf{If $(1)/(a) > 0$ then $a > 0$}: \\ \implies √(x-2) & > 0\\ x-2 & > 0\\ x & > 2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/bar3claj2o4bmo33j64ykac6kepyscah7l.png)
Decreasing
![\begin{aligned}\frac{\text{d}y}{\text{d}x} & < 0 \\ \implies (1)/(2√(x-2)) & < 0 \\ (1)/(√(x-2)) & < 0\\ \textsf{If $(1)/(a) < 0$ then $a < 0$}: \\ \implies √(x-2) & < 0\\ \textsf{As $√(x)\geq 0$, no solution.}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/ynv9ubuisz7ox9wj3jxy6wmhgce65hr9rg.png)
Therefore:
- The function is increasing in the interval (2, ∞).
Symmetry
![\textsf{A function is \underline{even} when $f(x) = f(-x)$ for all $x$.}](https://img.qammunity.org/2023/formulas/mathematics/college/veqc57k6mgs8v1847tqmn5d44ggzf4uv27.png)
![\textsf{A function is \underline{odd} when $-f(x) = f(-x)$ for all $x$.}](https://img.qammunity.org/2023/formulas/mathematics/college/y52mbjhisgxnpu4hju2l1il2ekq5nvai3r.png)
As there is no symmetry about the y-axis (even symmetry) and no origin symmetry (odd symmetry), the symmetry of the function is neither.