Answer:
The length of rectangle is 23 cm.
Step-by-step Step-by-step explanation:
DIAGRAM :
![\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large{14\ cm}}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large{14\ cm}}\put(-0.5,-0.4){\bf}\put(-0.5,3.2){\bf}\put(5.3,-0.4){\bf}\put(5.3,3.2){\bf}\end{picture}](https://img.qammunity.org/2023/formulas/mathematics/college/voydkfw0m2d3t5xcayz68i2j7xq2jk3xj8.png)
![\begin{gathered}\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oeihgfzi0pxzoj94w06led5s6gzwvlc2hr.png)
SOLUTION :
Here's the required formula to find the length of rectangle :
![{\longrightarrow{\pmb{\sf{A_((Rectangle)) = l * b}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jmof64x8fmc1rpb1lc3hzzppjcainolj55.png)
- A = Area
- l = length
- b = breadth
Substituting all the given values in the formula to find the length of rectangle :
![\begin{gathered}\qquad{\longrightarrow{\sf{A_((Rectangle)) = l * b}}}\\\\\qquad{\longrightarrow{\sf{322 = l * 14}}}\\\\\qquad{\longrightarrow{\sf{322 = 14l}}}\\\\\qquad{\longrightarrow{\sf{l = (322)/(14)}}}\\\\\qquad{\longrightarrow{\sf{l = \cancel{(322)/(14)}}}}\\\\\qquad{\longrightarrow{\sf{l = 23 \: cm}}}\\\\\qquad{\star{\underline{\boxed{\sf{ \pink{l = 23 \: cm}}}}}}\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ylgn4tyhm9g8n30ql47qx8oe52n37naqcz.png)
Hence, the length of rectangle is 23 cm.
![\begin{gathered}\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oeihgfzi0pxzoj94w06led5s6gzwvlc2hr.png)
LEARN MORE :
![\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length* Breadth \\\\ \star\sf Triangle=(1)/(2)* Breadth* Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\frac {1}{2}* d_1* d_2 \\\\ \star\sf Rhombus =\:\frac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth* Height\\\\ \star\sf Trapezium =\frac {1}{2}(a+b)* Height \\ \\ \star\sf Equilateral\:Triangle=\frac {√(3)}{4}(side)^2\end {minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/xkztaey9nti7dq76koz1jb5uybozjgvgu9.png)
![\rule{300}{2.5}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4wr5wvuxv3n1yp1b1sykhxf527peu2ltxm.png)