149k views
18 votes
The area of an 14-cm-wide rectangle is 322 cm2. What is its length?
The length is
cm.

User Dhilt
by
5.6k points

2 Answers

7 votes

Answer:

  • Area=322cm²
  • Breadth=14cm
  • Length=?

We know that,


\implies\displaystyle{Area_((rectangle))} = length(l) * breadth(b)


\implies\displaystyle{3 {22}^{} } = l * 14


\implies\displaystyle{ (322)/(14) = l }


\implies \displaystyle{23=l}

Thus,the value of length=23 cm.

User Alexcristea
by
5.7k points
11 votes

Answer:

The length of rectangle is 23 cm.

Step-by-step Step-by-step explanation:

DIAGRAM :


\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large{14\ cm}}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large{14\ cm}}\put(-0.5,-0.4){\bf}\put(-0.5,3.2){\bf}\put(5.3,-0.4){\bf}\put(5.3,3.2){\bf}\end{picture}


\begin{gathered}\end{gathered}

SOLUTION :

Here's the required formula to find the length of rectangle :


{\longrightarrow{\pmb{\sf{A_((Rectangle)) = l * b}}}}

  • A = Area
  • l = length
  • b = breadth

Substituting all the given values in the formula to find the length of rectangle :


\begin{gathered}\qquad{\longrightarrow{\sf{A_((Rectangle)) = l * b}}}\\\\\qquad{\longrightarrow{\sf{322 = l * 14}}}\\\\\qquad{\longrightarrow{\sf{322 = 14l}}}\\\\\qquad{\longrightarrow{\sf{l = (322)/(14)}}}\\\\\qquad{\longrightarrow{\sf{l = \cancel{(322)/(14)}}}}\\\\\qquad{\longrightarrow{\sf{l = 23 \: cm}}}\\\\\qquad{\star{\underline{\boxed{\sf{ \pink{l = 23 \: cm}}}}}}\end{gathered}

Hence, the length of rectangle is 23 cm.


\begin{gathered}\end{gathered}

LEARN MORE :


\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length* Breadth \\\\ \star\sf Triangle=(1)/(2)* Breadth* Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\frac {1}{2}* d_1* d_2 \\\\ \star\sf Rhombus =\:\frac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth* Height\\\\ \star\sf Trapezium =\frac {1}{2}(a+b)* Height \\ \\ \star\sf Equilateral\:Triangle=\frac {√(3)}{4}(side)^2\end {minipage}}


\rule{300}{2.5}

User Marvo
by
5.6k points