275,694 views
14 votes
14 votes
Matrics Assisment
Q.2) If A = [11 2 ; 8 5] and b = [12 2 ; 3 1] then find B - A​

Matrics Assisment Q.2) If A = [11 2 ; 8 5] and b = [12 2 ; 3 1] then find B - A​-example-1
User Justinpawela
by
3.0k points

2 Answers

12 votes
12 votes

Answer:

[10;-5-4]is the answer.

Explanation:

I think the ans will =[10;-5-4]

I hope it will help u.

Matrics Assisment Q.2) If A = [11 2 ; 8 5] and b = [12 2 ; 3 1] then find B - A​-example-1
User Dinigo
by
3.6k points
15 votes
15 votes

Answer:


\textsf{\large{\underline{Solution 2}:}}

Here:


\rm:\longmapsto A =\begin{bmatrix} 11&8\\ 2&5\end{bmatrix}


\rm:\longmapsto B=\begin{bmatrix} 12&3\\ 2&1\end{bmatrix}

Therefore, the matrix B - A will be:


\rm=\begin{bmatrix} 12&3\\ 2&1\end{bmatrix} - \begin{bmatrix} 11&8 \\ 2&5\end{bmatrix}


\rm=\begin{bmatrix} 1& - 5\\ 0& - 4\end{bmatrix}


\rm:\longmapsto B -A =\begin{bmatrix} 1& - 5\\ 0& - 4\end{bmatrix}


\textsf{\large{\underline{Learn More}:}}

Matrix: A matrix is a rectangular arrangement of numbers in the form of horizontal and vertical lines.

Horizontal lines are called rows and vertical lines are called columns.

Order of Matrix: A matrix containing x rows and y column has order x × y and it has xy elements.

Different types of matrices:

Row Matrix: This type of matrices have only 1 row. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 2&\rm 3\end{bmatrix}

Column Matrix: This type of matrices have only 1 column. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm1\\ \rm2\\ \rm3\end{bmatrix}

Square Matrix: In this type of matrix, number of rows and columns are equal. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 2\\ \rm 3&\rm 4\end{bmatrix}

Zero Matrix: It is a matrix with all elements present is zero. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 0&\rm 0\\ \rm 0&\rm 0\end{bmatrix}

Identity Matrix: In this type of matrix, diagonal element is 1 and remaining elements are zero. An Identity matrix is always a square matrix. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 0\\ \rm 0&\rm 1\end{bmatrix}

User VenkateshJN
by
2.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.