156,477 views
1 vote
1 vote
Show me how you solve it

Show me how you solve it-example-1
User Dachiz
by
2.6k points

1 Answer

15 votes
15 votes

Answer:

5^20

Explanation:

Law of Exponent I


\displaystyle \large{ \frac{ {a}^(m) }{ {a}^(n) } = {a}^(m - n) }

Therefore:


\displaystyle \large{( \frac{ {5}^(8) }{ {5}^(3) } )^(4) = ({5}^(8 - 3))^(4) } \\ \displaystyle \large{( \frac{ {5}^(8) }{ {5}^(3) } )^(4) = ({5}^(5))^(4) }

Law of Exponent II


\displaystyle \large{( {a}^(m) ) ^(n) = {a}^(m * n) }

Thus:


\displaystyle \large{( \frac{ {5}^(8) }{ {5}^(3) } )^(4) = ({5}^(8 - 3))^(4) } \\ \displaystyle \large{( \frac{ {5}^(8) }{ {5}^(3) } )^(4) = ({5}^(5))^(4) } \\ \displaystyle \large{( \frac{ {5}^(8) }{ {5}^(3) } )^(4) = {5}^(5 * 4) } \\ \displaystyle \large{( \frac{ {5}^(8) }{ {5}^(3) } )^(4) = {5}^(20) }

User Justine
by
3.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.