210,037 views
33 votes
33 votes
the time period of an oscillating body is T how will the time of the period vibrating body change if the value of G is decreased by 9 times

User Dima Vidmich
by
3.7k points

1 Answer

10 votes
10 votes


\\ \sf\longmapsto T_1=2\pi \sqrt{(m)/(g)}

  • g be x


\\ \sf\longmapsto T_1=2\pi \sqrt{(m)/(x)}

  • G be 9x


\\ \sf\longmapsto T_2=2\pi \sqrt{(m)/(G)}


\\ \sf\longmapsto T_2=2\pi \sqrt{(m)/(9x)}

Now


\\ \sf\longmapsto (T_1)/(T_2)=\frac{2\pi \sqrt{(m)/(x)}}{2\pi \sqrt{(m)/(9x)}}


\\ \sf\longmapsto (T_1)/(T_2)=(1)/(9)


\\ \sf\longmapsto T_1:T_2=1:9

The time period will increase by 9 times

User Tdao
by
2.3k points