504,381 views
11 votes
11 votes
B) Let g(x) =x/2sqrt(36-x^2)+18sin^-1(x/6)

Find g'(x) =

User Felinira
by
2.9k points

1 Answer

28 votes
28 votes

I suppose you mean


g(x) = \frac x{2√(36-x^2)} + 18\sin^(-1)\left(\frac x6\right)

Differentiate one term at a time.

Rewrite the first term as


\frac x{2√(36-x^2)} = \frac12 x(36-x^2)^(-1/2)

Then the product rule says


\left(\frac12 x(36-x^2)^(-1/2)\right)' = \frac12 x' (36-x^2)^(-1/2) + \frac12 x \left((36-x^2)^(-1/2)\right)'

Then with the power and chain rules,


\left(\frac12 x(36-x^2)^(-1/2)\right)' = \frac12 (36-x^2)^(-1/2) + \frac12\left(-\frac12\right) x (36-x^2)^(-3/2)(36-x^2)' \\\\ \left(\frac12 x(36-x^2)^(-1/2)\right)' = \frac12 (36-x^2)^(-1/2) - \frac14 x (36-x^2)^(-3/2) (-2x) \\\\ \left(\frac12 x(36-x^2)^(-1/2)\right)' = \frac12 (36-x^2)^(-1/2) + \frac12 x^2 (36-x^2)^(-3/2)

Simplify this a bit by factoring out
\frac12 (36-x^2)^(-3/2) :


\left(\frac12 x(36-x^2)^(-1/2)\right)' = \frac12 (36-x^2)^(-3/2) \left((36-x^2) + x^2\right) = 18 (36-x^2)^(-3/2)

For the second term, recall that


\left(\sin^(-1)(x)\right)' = \frac1{√(1-x^2)}

Then by the chain rule,


\left(18\sin^(-1)\left(\frac x6\right)\right)' = 18 \left(\sin^(-1)\left(\frac x6\right)\right)' \\\\ \left(18\sin^(-1)\left(\frac x6\right)\right)' = (18\left(\frac x6\right)')/(√(1 - \left(\frac x6\right)^2)) \\\\ \left(18\sin^(-1)\left(\frac x6\right)\right)' = \frac{18\left(\frac16\right)}{\sqrt{1 - (x^2)/(36)}} \\\\ \left(18\sin^(-1)\left(\frac x6\right)\right)' = (3)/(\frac16√(36 - x^2)) \\\\ \left(18\sin^(-1)\left(\frac x6\right)\right)' = (18)/(√(36 - x^2)) = 18 (36-x^2)^(-1/2)

So we have


g'(x) = 18 (36-x^2)^(-3/2) + 18 (36-x^2)^(-1/2)

and we can simplify this by factoring out
18(36-x^2)^(-3/2) to end up with


g'(x) = 18(36-x^2)^(-3/2) \left(1 + (36-x^2)\right) = \boxed{18 (36 - x^2)^(-3/2) (37-x^2)}

User Florian Diesch
by
2.9k points